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Multivariate Generalized Gaussian Distribution:
Convexity and Graphical Models

Teng Zhang, Ami Wiesel, and Maria Sabrina Greco

Abstract—We consider covariance estimation in the multivariate
generalized Gaussian distribution (MGGD) and elliptically sym-
metric (ES) distribution. The maximum likelihood optimization
associated with this problem is non-convex, yet it has been proved
that its global solution can be often computed via simple fixed
point iterations. Our first contribution is a new analysis of this
likelihood based on geodesic convexity that requires weaker
assumptions. Our second contribution is a generalized framework
for structured covariance estimation under sparsity constraints.
We show that the optimizations can be formulated as convex min-
imization as long the MGGD shape parameter is larger than half
and the sparsity pattern is chordal. These include, for example,
maximum likelihood estimation of banded inverse covariances in
multivariate Laplace distributions, which are associated with time
varying autoregressive processes.

Index Terms—Cholesky decomposition, geodesic convexity,
graphical models, multivariate generalized Gaussian distribution.

I. INTRODUCTION

OVARIANCE estimation is a fundamental problem in

multivariate statistics. Many techniques for hypothesis
testing, inference, denoising and prediction rely on accurate
estimation of the true covariance. The problem is challenging
when the available data is high dimensional and non-Gaussian.
Such settings are typical in many applications including speech,
radar, wireless communication, finance and more. These led
to a growing interest in both robust and structured covariance
estimation. Specifically, in this paper, we consider maximum
likelihood estimation (MLE) in the multivariate generalized
Gaussian distribution, with and without sparsity constraints on
the inverse covariance.

The first part of this paper considers the geodesic convexity
in MLE in elliptically symmetric (ES) distributions. Methods
for robust covariance estimation date back to the early works of
[18], [31]. A popular approach is Tyler’s scatter estimate. It in-
volves a non-convex optimization yet can be solved via simple

Manuscript received December 21, 2012; revised April 03, 2013 and May
28, 2013; accepted May 29, 2013. Date of publication June 12, 2013; date of
current version July 22, 2013. The associate editor coordinating the review of
this manuscript and approving it for publication was Dr. Ta-Hsin Li. The work
of A. Wiesel was supported in part by the Intel Collaboration Research Institute
for Computational Intelligence.

T. Zhang is with the Institute for Mathematics and its Applications, University
of Minnesota, Minneapolis, MN 55455 USA (e-mail: zhang620@umn.edu).

A. Wiesel is with The Hebrew University of Jerusalem, Jerusalem 91905,
Israel (e-mail: amiw@cs.huji.ac.il).

M. S. Greco is with the Department of Ingegneria dell’ Informazione, Univer-
sita di Pisa, Pisa 56122, Italy (e-mail: m.greco@jiet.unipi.it).

Digital Object Identifier 10.1109/TSP.2013.2267740

fixed point iteration. It has been rigorously analyzed and suc-
cessfully applied to different problems [26], [31]. Recently, it
was shown that the result is in fact the solution to a geodesi-
cally convex minimization [6], [10], [32], [33], [36]. Geodesic
convexity ensures that any local minima is also globally optimal
and leads to a much simpler analysis [27]. It also allows for nu-
merous extensions, e.g., regularized solutions. In a competing
line of works, a different class of robust covariance estimation
techniques was proposed based on the MGGD [11], [23]. A well
known example of MGGD is the multivariate Laplace distribu-
tion [14]. Fixed point iterations for MGGD estimation and their
analyses has recently been considered in [9], [24], [25]. The first
contribution in this paper is a new analysis which shows that the
negative log-likelihood in MGGD is also geodesically convex.
This result requires weaker conditions than previous analyses,
provides more intuition and paves the road to numerous gener-
alizations.

The second part of this paper addresses structured covari-
ance estimation. Structure exploitation is a main ingredient in
modern statistics that allows accurate high dimensional estima-
tion via a small number of samples. A promising approach is
based on sparse inverse covariance models. In the multivariate
Gaussian case these are known as graphical models and char-
acterize conditional independence [4], [8], [13], [20]. These
models have been successfully applied to speech recognition,
sensor networks, computer networks and other fields in signal
processing [10], [35]. Our goal is to combine such models with
non-Gaussian distributions, e.g., MGGD. Recently, a similar
problem was addressed using an expectation maximization
technique [15]. Another line of work focused on combining
Tyler’s scatter estimate with a banded inverse covariance prior
[1], [2]. Graphical models for transelliptical distributions were
discussed in [21]. In this paper, we combine the MGGD frame-
work with prior sparsity constraints on the inverse covariance.
We show that the optimization can be formulated into a convex
form as long as the MGGD scale parameter is larger than half
and the sparsity satisfies a chordal structure. Chordal models,
also known as decomposable or triangulated models, include
banded structures, multiscale settings and other practical sce-
narios [12], [16], [34]. Such structures are associated with a
perfect ordering of the variables. A typical example is banded
models associated with time-varying autoregressive processes
[3].

Our results are also applicable to the case of unknown spar-
sity pattern, i.e., structure learning via sparsity inducing penal-
ties, but require prior knowledge of the perfect order. Recent
works on structure learning in directed acyclic graphs provide
data driven techniques for learning this order [28], [30].
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The outline of the paper is as follows. We begin in Section 11
with a few mathematical preliminaries that will be useful in
our work. Then, we continue to our two main contributions. In
Section IIT we provide a new geodesic analysis of MGGD esti-
mation, and in Section IV we introduce a convex optimization
framework for chordal structured MGGD estimation. Simula-
tion results are described in Section V, and concluding remarks
are offered in Section VI.

We use the following notations. We denote the set of real,
symmetric and positive definite matrices by S 4 (p) C RP*P.
We denote the span operator by sp{-}.

II. PRELIMINARIES

We begin with a brief review of two mathematical concepts
which will be instrumental in the next sections.

A. Geodesic Convexity

Geodesic convexity is an extension of classical convexity
which replaces lines with geodesic paths in manifolds. More
details on this topic can be found in [27]. Given a Riemannian
manifold M and a set A C M, we say a function f : A —R
is geodesically convex, if every geodesic v, of M with end-
points z,y € A (i.e., Yxy is a function from [0, 1] to M with
Yy (0) = 2 and 7y, (1) = y) lies in .4, and

Oy () < (A =) fa) +1f ()
for any x,y € Aand 0 < ¢ < 1. (1)

If the inequality in (1) is replaced by strict inequality, we call
the function f geodesically strictly convex. An equivalent def-
inition follows from [22, Theorem 1.1.4].

Proposition 1: For continuous function f, the definition in
(1) is equivalent to the condition

(e (3)) £ 3700+ 30 @)

for anyx,y € A. 2)

The importance of geodesic convexity stems from the fol-
lowing properties (see [27, Theorem 2.1] for more details).

Proposition 2: Any local minimizer of a geodesically convex
function is also its global minimizer.

Proposition 3: Any strictly geodesically convex function has
a unique global minimizer.

In particular, we consider geodesic convexity on the manifold
of positive definite matrices denoted by S (p). The geodesic
connecting £; € S;4 (p) and 33 € S, (p) is defined as [7,
Chapter 6]

L 1 -
w0 -t (s sl o

Geodesic convexity of Tyler’s likelihood has been identified
in [6], [32], [33], [36]. In Section III, we continue this line of
works and show that the MGGD likelihood is also geodesically
convex.

B. Chordal Graphs

In statistical graphical modeling, graphs are used to char-
acterize the sparsity pattern of the corresponding inverse co-
variance matrices. When the pattern belongs to a special class
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known as chordal graphs, these concentration matrices satisfy
an appealing structure which will be exploited in Section IV.
More details on chordal graphs and their relation to graphical
models can be found in [12], [16], [20], [34].

A graph G (V. E) is chordal if every cycle of length > 4 has
an edge joining two nonconsecutive vertices of the cycle. For a
chordal graph, there is a perfect elimination ordering of vertices,

(v1,v2;...,vy,) such that for any 1 < ¢ < n, the neighbor of
vi, Adj (v;) = (uw €V : (u,v,;) € E), satisfies that Adj (v;) N
{¥;41,Vig2. ..., v, } induces a fully connected clique, i.e., a set

of fully connected nodes.

It is convenient to define the sparsity pattern of a square n x n
matrix C via a graph G (V, E) with n vertices. We say that C
is G-sparse if

[Ci; =0, for all (i,j) ¢ E. 4

A Cholesky decomposition is a generalization of the squared
root operation to positive definite matrices. Any > € S, (p)
has a unique decomposition ¥ = CC” where the Cholesky
factor C is a lower-triangular matrix with positive diagonal el-
ements.

The following result characterizes the relation between sparse
Cholesky decompositions and chordal graphs.

Proposition 4: Let G (V, ) be a chordal graph with a nat-
ural! perfect order, i.e.,v; = i fori = 1,...,n.IfX is G-sparse,
real and positive definite, then there exists a unique -sparse
lower triangular C with positive definite diagonal entries such
that ¥ = CCT. If C is G-sparse and lower-triangular, then
CC" is G-sparse and positive definite.

The existence proof can be found in [16, Section 2.1], and the
uniqueness is a direct consequence of the perfect elimination
order.

1) Example 1: For a banded matrix with band width d, it
corresponds to a graph G (V, F) defined as follows: (¢,j) € F
when |i — j| < d. Now we check that this is a chordal graph: for
every cycle with length > 4, the indices of the four nodes differ
by d at most, therefore the edges connect all nodes in the cycle,
which corresponds to the definition of chordal graph.

The elimination order for this chordal graph turns out to be
the natural order »; = 7. Therefore Proposition 4 shows that the
Cholesky decomposition of a banded matrix ¥ is the product of
a banded (with the same bandwidth d) lower-triangular matrix
with its transpose.

One can also easily show that the product of a banded lower-
triangular matrix with its transpose is still a banded (with the
same band width), positive definite matrix, which exemplifies
the last sentence in Proposition 4.

For more examples of Chordal graph and its associated per-
fect order, we recommend the examples and graphs in [35, Sec-
tion I.A] and [12, Section 3].

III. GEODESIC CONVEXITY IN MGGD

In this section, we consider unconstrained MLE in MGGD.
More precisely, we address a more general family of elliptically
symmetric (ES) distributions (see [11] for a review and [24]

UIf the order is not natural, this result holds by permuting the columns of the
matrix.
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for a recent generalization to complex case). These problems
involve non-convex minimizations, yet it has been shown that
their global minima can be efficiently found using simple fixed
point iterations. We will show that the negative log-likelihoods
are in fact geodesically convex, and that this may be the under-
lying principle behind their success.

Anrandom variable z € R? has a ES distribution in real space
if its probability density function (p.d.f.) is

[(2)=CoalBI g (=0 S z=m) . O

where g : [0,0c) — (0, 00) such that [~ #~1g (#?) dt < oo,
C,.4 is a normalization constant such that the integral of the
distribution is 1. In (5), &> € S (p) is called a scatter matrix,
and p € RP is the center of the distribution.

MGGD [23] is a widely used special case of ES when

g(z) =exp (—.7:"3/2) (6)

where [ is the shape parameter. In particular, for 5 = 0.5 it
gives multivariate analog of Laplace distribution, and the mul-
tivariate Gaussian distribution is obtained for 3 = 1.

We consider the estimation of ¥ given n independent and
identically distributed (i.i.d) realizations of a zero mean ES
random vector denoted by 2, ...,2,. The MLE is the param-
eter that minimizes the negative-log-likelihood

"

Ly (E) = Z i) (ziTZ*lzi) + glogdet (E) R

i=1

where p () = —log ¢ (). The following Theorem 1 character-
izes the existence and uniqueness properties of this MLE. The-
orem 1(a) characterizes the uniqueness and is the main contri-
bution in this section; Theorem 1(b) characterize the existence
and is borrowed from [31, Theorem 2.1].
Theorem 1:
(a) Assume that p () is continuous in (0, oc), nondecreasing
and p (") is convex, then Ly () is geodesically convex
in Sy (p). If additionally sp{z1,22,...,2,} = R?,
p () is strictly increasing and p (e*) is strictly convex,
then Lg (%) is geodesically strictly convex in S (p).
(b) If p(x) is continuous in [0,00), a1 =
sup{alz®/?exp (—p(x)) =0 asx —oc} is  pos-
itive, and X = {z;}7" 4,

XNV
— <1

—dim(V ,
—Lm() for any linear subspace V € RP, (7)

then there exists a minimizer of Lq (%).

Before proving this theorem, a few comments are in order.
We remark that the condition sp{z1, 22,...,2,} = RF is also
implicated by (7), since otherwise V = sp{z1, 2z2,...,2,} vi-
olated the assumption. This condition is necessary since other-
wise Lg (Py) — —oc as ¥ — Py, where Py is the projector
to subspace V) and therefore the minimizer of Ly (%) does not
exist.
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Theorem 1 relaxes the conditions for the uniqueness/exis-
tence of the minimizer of Lo (33) presented in [19, Theorem
2.2]:

M1 p’ (x) is non-negative, continuous and nonincreasing.

M2 xp’ () is strictly increasing.

M3 condition (7).
Our assumption that p is increasing corresponds to p' (z) >
0, which follows from M1 , where p’ is nonnegative and M2
(which exclude the possibility that p’ () = 0 for z > 0); and
our assumption that p (e*) is strictly convex corresponds to M2
, where z:p” () is strictly increasing. In comparison, our condi-
tions does not require p to be differentiable, and we do not as-
sume their assumptions in M1 that o’ () is continuous or non-
increasing.

A special case of Theorem 1 is Tyler’s M-estimator in which
p(x) = log (z) /2p. Following the first part of Theorem 1(a),
Lo (%) is geodesically convex, which has been previously
identified in [6], [32], [33], [36]. The geodesic convexity does
not contradict the non-uniqueness of Tyler’s M-estimator since
this convexity is not strict. Another special case is the class
of MGGD estimators. The following corollary follows from
Theorem 1 and the fact that @; in Theorem 1(b) is co.

Corollary 1: For all § > 0, the ML estimator for MGGD
exists and unique if sp{z1, 22,...,2,} = RP.

Existence and uniqueness of the MLE in MGGD has been
previously addressed in [24], Section V.A,. However, this con-
tribution does not identify geodesic convexity and applies only
to 0 < 3 < 1. Our theorem applies to MGGD with all § > 0
and provides additional insight based on geodesic convexity.
Furthermore, it applies to other ES distributions, including cases
where p’ (2) is not continuous, e.g., p () = = when z < 1 and
p(x) =3x —2whenxz > 1.

Here we remark that although ML estimator for elliptically
symmetric (ES) distribution is the motivation of the argument,
Theorem 1 (and Theorem 2 in next section) hold even if p ()
does not relate to an elliptically symmetric (ES) distribution. For
example, Tyler’s M-estimator can be written in the form of (5)
with p (2) = log (x) /2p; however this p (z) corresponds to the
central angular Gaussian which is not a member in ES class [24,
(36)]. Another example is in [24, page 5610], where p' is set to
be a huber function.

We remark that the Theorem 1 also applied to the complex
elliptically symmetric (CES) distributions defined by

F@ =Gl (-w s z-w). ®

where the MLE estimator minimizes
Lo(Z) =Y p(2f'S7'2) + nlogdet ().
i=1

Then Theorem 1 holds with a1 =
sup{alz® exp (—p (2)) =0 as x — o0}. This is
also a generalization of the uniqueness/existence of the
minimizer of Lo () presented in [24, Section V. A].

Proof: (a) Applying [33, Proposition 1], if 33 is the
geodesic mean of X1 and X5 defined in (3), then

In (zTEflz) + In (szglz) >21In (szglz) )
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Combining this fact with the convex/monotone properties of p,
we have

p (ziTEflzi) +p (z?Z;lzl)
> 2p (exp ((In (2] =7 '2;) +1In (27 55 '2:)) /2)) (10)

> 2p (cxp (ln (zTEglz,))) =2p (Z;Eg‘lz,,;) .
Since
log det (31) + log det (32) = 2logdet (23) (12)
we proved
Lo (31) + Lo (¥2) > 2Lo (33) - (13)

By Proposition 1, we proved the geodesic convexity of Lg (2).

When p (&%) is strictly convex, L (X) is geodesically strictly
convex since the equalities in (10) and(11) can not hold simulta-
neously forall1 < ¢ < n. The proofis as follows. Following the
proof of [36, Theorem IIL.1], when sp{z1,22,...,2,} = R?,
the equality in (9) (and therefore the equality in(11)) holds for
all 1 < ¢ < n only when 31 = ¢35 for some ¢ # 1. However,
31 = ¢Xp would fail the equality in (10) due to the strict con-
vexity of p (e%). |

In practice, various numerical techniques can be used to find a
local minima of the MGGD negative log-likelihood. Theorem 1
and geodesic convexity then ensure that this local minima will
also be global minima. A promising approach is the classical
iterative reweighed scheme due to [5], [19]:

n

Vgl = Z u (2] %, %) ziz] [n, (14)
i=1
where w (x) = p’ (z). It has been shown in [5, Proposition

1] that when Sp (21, 22,....2,) = RP, p’ (z) is continuous
and nonnegative, then Lo (X,,) decreases monotonically
(Sp(2z1,22,....2,) = RP is assumed in order to make sure
that Lo (3,,41) is well-defined). [5, Proposition 3] shows that
any limiting point of the sequence >.,,, is a stationary point.
When the assumptions in Theorem 1 hold, this point is the
unique minimizer of Lg (33).

IV. CONVEXITY IN CHORDAL MGGD

In this section, we consider structured MGGD estimation. In
particular, we consider MLE of the MGGD scatter matrix sub-
ject to sparsity constraints. Thus, we are interested in the solu-
tion to

miny Y7 p (27X 2;) + nlogdet (%)
st B, =0, ()¢ E (15)
where the objective is the negative MGGD log-likelihood as
described in Section 111, and E is the edge set of a known graph
G (V, E) associated with the sparsity of ¥ ~!. Unfortunately,
the above minimization is not convex in ¥ or ¥t Nor is it
geodesically convex in it. Indeed, the sparsity constraints are
not preserved by the positive definite geodesic in (3). Thus, it is
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not clear whether its global minima can be found in an efficient
manner.

In what follows, we propose a simple trick to “convexify” the
optimization in many interesting cases of MGGD. In particular,
we assume the G is chordal and represent ¥~ ! with its Cholesky
factor C. Due to Proposition 4, a unique chordal decomposition
exists and we obtain

IninCE}’ 1P (HCTZZHQ) —2n Zf;:l log (C]7) (16)
st [C] =0, () ¢E
where
C;;>0
— PXp . 2,
V= {CEH : Ci,j:()foraniq} an
and we have used
nlog det ((CCT 1) = —-2n Zlog (18)

The following theorem characterizes the properties of this opti-
mization.

Theorem 2: (a) Assume that p () is continuous in (0, 00),
nondecreasing and p (z?) is convex, the objective of (16) is
strictly convex. (b) When sp{z1,22,...,2,} = RP, a mini-
mizer to (16) exists.

Proof: Negative logarithms are strictly convex, and it re-
mains to show that

2
C,+C.\"
p<H —) i
2
_, [ (1etzl + ¢tz
- 2
1
< Lo(ICT=I) + 2o (105213 ()

where we have used the triangle inequality and the convexity of
p(z%).

To prove the existence of minimizer, we need to prove
that for Ly (C) = 30, p (|C72il) — 2030, log (C, ),
Ly (C) — o0 as ||C]|r — oo or the smallest elgenvalue of C
goes to 0. When ||C||F — o0, since sp{z1,22,...,2,} = RP
and C is full rank, there exists ¢ such that 37 [|C” z;||? >
¢2||C||%. Consider that p (%) is convex, there exists a constant
c1 and C; such that when 2 37 [|CT 2|2 > O,

Yo (lcT=) >77P< ZlICTzJI?)
i=1

> ney

1 n ‘
-2 €T z]? = Vaere|[Cl e
=1

Therefore as ||C||r — o0, L1 (C) — oo.

When the smallest eigenvalue of C' goes to 0, we have
det (C) — 0 and 32%_, log (C; ;) = logdet (C) — —o0. In
another aspect, since p (L ) is convex, lim inf, — o p (x) exists
(by convexity it is larger than 2p (1) — p(4)). Combining it
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with the fact that p (z) is nondecreasing, L1 (C) — oo as the
smallest eigenvalue of C' goes to 0, and the existence of the
minimizer of L (C) is proved. []

The theorem shows that, under suitable conditions, any local
minimizer of (16) is globally optimal. This holds for any ES
distribution with p satisfying the assumptions. In particular, an
important special case is chordal graphical models in MGGD:

Corollary 2: 1f sp{z1,22,....2n,} = RP, under chordal
graphical models the ML estimator for MGGD exists and
unique for all 3 > 0.5.

Unfortunately, the recent result in [2] on p () = log (z) /2p
does not satisfy our conditions and requires a different analysis.
And there is no detailed proof to support the claim in [2] that
this banded Tyler estimators converge to unique fixed points.

When the condition in Theorem 2 holds, the objective func-
tion is convex with respect to C. Therefore, it can be numer-
ically minimized via any general convex optimization solver.
For example, in the MGGD case with § > 0.5 the problem can
be expressed as

mingey.s 2y [ti* =20 3071 log(Cy )
[C]” = 07 (LJ) ¢ E

where t are auxiliary variables. This formulation with second
order cone constraints can be easily solved using the popular
CVX package [17].

Alternatively, the optimization can be addressed using a
majorization—minimization (MM) technique, e.g., [5]. The
method begins with an initial estimate ¥y € S, (p) and
updates it according the following iterations

. [ ming h(Z,%,,)
Pkl SUE s [21] =0, (i) ¢E

(20)

€2y

where

T

h(Z,5m) =Y u(z]S,'2;) 2] 57" 2z + nlogdet () + C.

1=1
(22)
w(x) = p'{¢) and C is chosen such that
h(X0, 2m) = Lo (2,). Since p”(x) is continuous
and nonnegative, we have
LO (Enm-f—l) Z h (Za Em.) Z h (Z'm,a Em,) = LO (Zm,) (23)

and Lo (3,,) converges as m — oo. Each iteration step in
(21)—(22) can be interpreted as a Gaussian graphical model
optimization (the weights w(-) are constant with respect to
the optimization variable). These minimizations have a simple
closed form solution when G (V, E) is chordal (see appendix).
Thus, the proposed technique is very efficient for implementa-
tion in practice.

Finally, it is worth mentioning that our framework can
also be extended to structure learning in MGGD graphical
models. Structure learning, also known as covariance selection,
considers the estimation of an inverse covariance which is
known to be sparse but the sparsity pattern itself is unknown
[8], [13], [29]. Adding a sparsity constraint usually destroys
the convexity. Instead, the modern approach relies on a convex
relaxation based on an L1 norm penalty. In our context, the
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problem is convex in the Cholesky factor rather than in the
inverse covariance itself. This leads to the following convex
minimization

n P
Icnelgz:ﬂ (ICz:l1*) = 2r ) “log ([Cl;,) + AlCIL  (24)
=1

=1

where A is a regularization parameter, and ||C||; is a matrix ver-
sion of the L1 norm, namely a sum over the absolute values
of the elements in C. It is important to emphasize that this ap-
proach is only applicable to chordal graphical models and it as-
sumes that the perfect order of the variables is known a priori.
Recent developments in high dimensional covariance estima-
tion provide data-driven methods for identifying this order and
structure [28], [30]. We leave this topic as a possible direction
for future research.

Furthermore, our methodology can be easily extended to joint
estimation of the covariance and the centering parameter y. For
this purpose, consider the optimization of

: CT ;= 2
C}g’lﬂgﬂ(\l zi — %)
P
—2ny log(C;;)st.[Cl;; =0, (i) ¢ E (29
j=1

where £ = C” 1, When the conditions in Theorem 2(a) hold,
the objective function is jointly convex with respect to (C. ),
therefore any of its local minimizer is also its global minimizer.
Its algorithm can be similarly addressed using a majoriza-
tion—minimization (MM) technique as in (21)—(22).

V. NUMERICAL RESULTS

In this section, we present results of numerical simulations.
The purpose of these simulations is three fold: to validate our
theoretical results using synthetic data, to provide insight on
a few open theoretical questions using synthetic data and to
demonstrate the usefulness of our theoretical models in a real
world setting.

The first experiment considered inverse covariance estima-
tion using synthetic data generated from a known MGGD dis-
tribution with 3 > 0.5 and a chordal structure. The theory in
Section IV shows that, in this case, the MLE can be formulated
as a convex optimization. To verify this result, we generated n
i.i.d. realizations of an MGGD with p = 10, 3 = 0.5 (corre-
sponding to a classical multivariate Laplacian distribution), and
a banded inverse covariance of width b = 4. In particular, we
used a Toeplitz inverse covariance with 1.0 diagonal elements
and 0.4 off-diagonal elements within the main band. We esti-
mated the unknown covariance using five estimators:

* G: A Gaussian MLE with no prior knowledge of the struc-

ture, corresponding to the classical sample covariance.
* BG: A Gaussian banded MLE as detailed in the appendix.
* MGGD: An MGGD MLE with no prior knowledge of the
structure via 30 iterations of (14).

« BMGGDI: An MGGD banded MLE via 30 iterations of
(21) and the subroutine in the appendix. This estimator is
initialized with 32 = I.
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Fig. 1. MGGD with 8 = 0.5 and a banded inverse covariance .

*« BMGGD2: An MGGD banded MLE via 30 iterations of
(21) and the subroutine in the appendix. This estimator is
initialized with 3> = ¥ (which is clearly impossible in
practice).

In all estimators above we use 30 as the number of iterations
since in our simulations the fixed point algorithms (14) and (21)
converge well after 30 iterations.

Fig. 1 shows the normalized mean squared Frobenius error in
the covariance averaged over 10000 independent simulations as
a function of the number of samples n. It is easy to see the per-
formance advantage of banded MGGD estimator. As expected,
BMGGD1 and BMGGD?2 converge to the identical fixed points
irrespective of their initial condition.

The second experiment is very similar to the first except that
£ = 0.2. Our theory assumes 3 > 0.5 and therefore does not
hold for this value of shape parameter. Yet, according to [2]
banded Tyler estimators do converge to unique fixed points, and
these can be interpreted as the limit of MGGD when 3 — 0. Our
proposed fixed point iteration in (21) can be implemented with a
small 3. Therefore, it is interesting to examine its performance
and we repeat the first experiment with 5 = 0.2. The results
are presented in Fig. 2. Interestingly, BMGGD1 and BMGGD2
converged to identical fixed points irrespective of their initial
condition. Thus, although we have no proof for this behavior,
we conjecture that, in practice, the iteration can also be used for
all MGGDs.

The third experiment focused on non-chordal structures. Our
theory assumes a chordal sparsity pattern and it is interesting
to see whether this assumption is indeed critical. Thus, we
repeated the first experiment associated with MGGD 3 = 0.5,
but replaced the banded inverse covariance with a loopy
structure. In particular, we constructed a two dimensional grid
graph of size p = 32 with the edges (3, 1), (5,1), (6,1), (7, 1),
(8,1), (9.1), (4,2), (6,2), (7,2), (8.2), (9,2), (4,3), (5,3),
(7,3), (8:3), (9,3), (6,4), (8,4), (9.4), (7,5), (9.5), (7,6),
(8,6), and (9, 7). All the non-zero off diagonal elements were
assigned a constant value small enough to ensure that >~ 1 will
be well conditioned. In contrast to the chordal case, MLE in
general Gaussian Graphical models in does not satisfy a closed
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Fig. 3. MGGD with 3 = 0.5 and a non-chordal graphical model.

form solution. Instead, we solved (15) using the CVX opti-
mization package [17]. The latter was used for implementing
BG, and for the inner solution in each iteration of BMGGD1
and BMGGD?2. The results averaged over 400 simulations?
are provided in Fig. 3. Here too, the iterations converged to
identical solutions and seem to be independent of their initial
conditions.

The fourth experiment addressed the practical use of the
BMGGDI estimator in a real world example. Following [29] we
considered the SONAR dataset from the UCI machine learning
data repository. This dataset has 111 spectra from metal cylin-
ders and 97 spectra from rocks, where each spectrum has 60
frequency band energy measurements. Quadratic discriminant
test is used to classify the metals and the rocks. It requires the
estimation of the covariance in both classes, and previous work
demonstrated the advantage of BG over the classical sample
covariance and the naive diagonal estimate. We repeated the
experiment step by step and added BMGGDI1. Specifically, we

2Due to CVX these simulations are highly time consuming.
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TABLE 1
TEST ERRORS IN SONAR DATASET
Sample covariance | Naive Bayes BG BMGGD1
24.0% 32.7% 15.4% 13.5%

chose (3 as the parameter within {0.5,0.6,...,0.9, 1.0} that
maximizes the MGGD likelihood, and used the same band
which was used by BG (selected via 10 random splits with
1/3 of the data for training and the validation likelihood). For
the QDA test we applied the covariance of MGGD, which

. . 1T(ZE

is ¢(3) %, where ¢(8) = 27 pﬁ(zi ; The test errors over a
standard leave-one-out cross validation are provided in Table I.
These results remained stable over different randomizations,

and demonstrate the advantage of the proposed BMGGDI1
framework.

VI. DISCUSSION

In this paper, we consider covariance estimation in the multi-
variate generalized Gaussian distribution (MGGD). We proved
that the MGGD negative log-likelihood is geodesically convex
for 5 > 0. In the sparsely constrained case, we proved that a
simple change of variables can transform it into a convex func-
tion as long as § > (.5 and the underlying graph is chordal. This
means that any local solution of these minimization is globally
optimal and the problems can be solved using standard descent
methods. In practice, we observed this behavior also for smaller
values of . This agrees with a similar result on banded Tyler
methods which can be interpreted as 3 — 0. An interesting di-
rection for future work is a rigorous analysis of these phenom-
enon when 0 < (3 < 0.5. Another direction is relaxing the
chordal assumption on the sparsity pattern. Here too, our nu-
merical experience suggests that simple descent methods con-
verge to the global solution and are independent of their initial
conditions. Finally, as mentioned above, it in interesting to ex-
amine the problem of structure learning in MGGDs via sparsity
enforcing priors.

APPENDIX

In this appendix, we review a simple closed form solution for
the MLE in chordal (decomposable) Gaussian graphical models
[4], [20], [34]. The problem is

miny >0, ;2% 1z, + nlogdet © 26
st B ,=0, ()¢E (26)

where
o =1U (z,L-Tanlzi) 27

are the iteration weights which do not depend on X. Using the
chordal Cholesky decomposition &1 = CC7, the problem is
equivalent to

ming Y7 ail|CTz|* — 20 18 log ([C]5)

s.t. [C]z‘j =0, (i,j)¢ Fori>j - (29)
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This minimization is completely separable and each column
of C can be simply obtained by a linear regression. Let
{Z;}¥_, C R™ be vectors consists of the i-th components of
V2130022, .. \fOnzZn, Ji = {i+1 <k <p: (k)€
E}, and assume that in the linear regression of Z; with respect
to {Z,};e.,, the parameter on Z; is 3 (¢, j), and standard error
is ;. Then

1, when i = j
[A];; = B8(j,%), wheni>jand(i,j) € E . (29)
0, otherwise
D = diag (r1,72,...,7p), (30)
and finally C = DA.
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