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Abstract—Signal-to-noise ratio (SNR) estimation is considered
for phase-shift keying communication systems in time-varying
fading channels. Both data-aided (DA) estimation and non-
data-aided (NDA) estimation are addressed. The time-varying
fading channel is modeled as a polynomial-in-time. Inherent
estimation accuracy limitations are examined via the Cramer–Rao
lower bound, where it is shown that the effect of the channel’s time
variation on SNR estimation is negligible. A novel maximum-like-
lihood (ML) SNR estimator is derived for the time-varying
channel model. In DA scenarios, where the estimator has a simple
closed-form solution, the exact performance is evaluated both with
correct and incorrect (i.e., mismatched) polynomial order. In NDA
estimation, the unknown data symbols are modeled as random,
and the marginal likelihood is used. The expectation-maximiza-
tion algorithm is proposed to iteratively maximize this likelihood
function. Simulation results show that the resulting estimator
offers statistical efficiency over a wider range of scenarios than
previously published methods.

Index Terms—Cramer–Rao bound (CRB), expectation-maxi-
mization (EM), maximum-likelihood (ML) estimation, signal-to-
noise ratio (SNR).

I. INTRODUCTION

MODERN wireless communication systems often require
knowledge of the signal-to-noise ratio (SNR) at the re-

ceiver. For example, SNR estimates are typically employed in
power control, mobile assisted handoff, and adaptive modula-
tion schemes, as well as soft decoding procedures [1], [2]. The
rapid development of these applications in the last decade has
led to an intense search for accurate and low-complexity SNR
estimators.

The problem of SNR estimation may be considered for data-
aided (DA) scenarios, where known transmitted data is used to
facilitate the estimation process, and for nondata-aided (NDA)
scenarios, since the periodic transmission of known data limits
system throughput. The basic problem was first introduced in
the 1960s by [3] and [4]. However, decreasing hardware cost
and increasing demands for pushing system performance to the

Paper approved by R. A. Kennedy, the Editor for Data Communications Mod-
ulation and Signal Design of the IEEE Communications Society. Manuscript re-
ceived May 11, 2003; revised October 28, 2003 and April 23, 2004. This paper
was presented in part at the IEEE International Conference on Communica-
tions, New York, NY, 2002, and in part at the IEEE International Conference on
Acoustics, Speech, and Signal Processing, Orlando, FL, 2002.

A. Wiesel was with the Department of Electrical Engineering—Systems, Tel
Aviv University, Ramat Aviv 69978, Israel. He is now with the Department of
Electrical Engineering, Technion—Israel Institute of Technology, Haifa 32000,
Israel (e-mail: amiw@tx.technion.ac.il).

J. Goldberg was with the Department of Electrical Engineering—Systems,
Tel Aviv University, Ramat Aviv 69978, Israel. He is now with Global Locate
Inc., San Jose, CA 95124 USA.

H. Messer-Yaron is with the Department of Electrical Engineering—Systems,
Tel Aviv University, Ramat Aviv 69978, Israel (e-mail: messer@eng.tau.ac.il).

Digital Object Identifier 10.1109/TCOMM.2006.873995

achievable limits has caused the topic to rise to prominence once
again.

Over the last decade, attention has focused on SNR estima-
tion for constant, frequency-flat channels [5], [6], as well as
for constant, frequency-selective channels [7], [8]. Various tech-
niques have been proposed including the maximum-likelihood
(ML) estimation method, the decision-directed (DD) method,
and the method of moments (MM). Moreover, the inherent ac-
curacy limitations associated with SNR estimation in a static
channel with no intersymbol interference (ISI) have been inves-
tigated in [6] and [9]. This paper focuses on two main aspects of
the problem: NDA estimation, and estimation in frequency-flat,
time-varying fading channels.

NDA estimation: The two standard NDA SNR estimators are
the DD estimator and the MM estimator and their variants. None
of these estimators attain the Cramer–Rao bound (CRB) over a
wide range of SNRs. In this paper, the problem of NDA esti-
mation is confronted using the assumption of independent and
identically distributed (i.i.d.) symbols and the associated mar-
ginal likelihood. This assumption allows for new estimation al-
gorithms and performance bounds. In particular, we extend the
work of [9], which first derived the CRB associated with the
marginal likelihood. Finally, we propose a novel ML estimator
based on the marginal likelihood. There is no closed-form so-
lution for this ML estimate. As an alternative to a potentially
costly exhaustive multidimensional search, we propose the use
of the expectation-maximization (EM) algorithm [10], [11].

Estimation in time-varying fading channels: All of the pre-
vious estimators are based on the assumption that the channel
is constant throughout the observation period. In many applica-
tions requiring SNR estimation (e.g., mobile communication),
this assumption is not valid [12]. In particular, in NDA esti-
mation, the channel is likely to be time-varying, since a rela-
tively long observation period is required for satisfactory per-
formance. Following [11] and [13], a time-varying, complex,
fading channel model is introduced.1 The channel is approxi-
mated as a polynomial-in-time with a few unknown coefficients.
A new CRB is derived where the received data distribution is
that associated with the new channel model. The main results
of this bound are that the effect of the channel’s time varia-
tion on SNR estimation is negligible, and that there is no in-
herent penalty in asymptotic performance due to overestimating
the order of this variation. These results motivate the design
of new SNR estimators for the time-varying channel model.
Hence, a novel DA and NDA ML estimator is derived. In DA
scenarios, where the estimator has a simple closed-form solu-
tion, exact performance is evaluated both with correct and in-
correct (i.e., mismatched) polynomial order. In NDA scenarios,

1The extension to frequency-selective channels is, at least conceptually,
straightforward.
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an EM-based estimator is suggested, which is very similar to
the approach taken in [11] in the context of joint time-varying
channel estimation and data detection.

II. PROBLEM FORMULATION

Consider the reception of a wireless communications phase-
shift keying (PSK)-type signal which passes through a time-
varying, multipath channel. When the signal is of sufficiently
narrow bandwidth, the channel frequency response may be con-
sidered flat over the frequency band of interest. In the time do-
main, this results in a time-varying, multiplicative channel gain.
Assuming an ideal receiver with perfect synchronization, the
symbol-spaced output of the receiver’s matched filter can be
written as

(1)

where at the time index , is the received sample, is the
transmitted data symbol, is the time-varying channel gain,
and is a realization of a zero-mean, white, complex normal
process of variance . These received samples can be conve-
niently represented in column vector form

(2)

where , , ,
and denotes the transpose operator. The matrix is
a diagonal matrix with . We will deal with the binary
PSK (BPSK) constellation, i.e., , and the quadrature
PSK (QPSK) constellation, i.e., .

Clarke’s flat-fading channel model will be used, wherein
is modeled as a realization of a zero-mean, complex normal
random process with the correlation function (e.g., [12])

, where denotes the ex-
pectation operator, denotes the conjugate operator, is the
channel variance, is the maximum Doppler frequency, is
the sampling rate, and is the zeroth-order Bessel function.

Generally, the complex channel is completely unknown to
the receiver. However, in some applications, it is reasonable to
assume that the receiver has a separate phase-synchronization
mechanism, such that the phase of the channel is known and is
compensated for [14]. In such applications, denotes a time-
varying, real channel.

In most applications, is such that , i.e.,
the channel is highly correlated and almost “constant” during
the observation interval. In practice, the channel is traditionally
modeled as constant, i.e., . However, as will be seen in
the following, even small variations from this channel model can
dramatically degrade the performance of traditional, constant
channel, SNR estimators.

A more appropriate time-varying channel model is the
polynomial-in-time model [11], [13]. The slowly time-varying
process is, by definition, bandlimited. Therefore, it can be

expanded as an -order polynomial-in-time, using Taylor’s
theorem

(3)

where is the th coefficient, is the time index of the
th sample, and is the remainder of the Taylor series.

In real channels, is a real coefficient. Otherwise, in com-
plex channels, each coefficient is actually two real coefficients,

. The mean-squared value of ap-
proaches zero as or as [13]. There-
fore, for sufficiently high, the channel can be accurately
approximated as , where ,

, , ,
and . For ease of notation, we sometimes
omit the subscript in and simply refer to .

Different problem scenarios give rise to different probability
density function (PDF) models for the received vector. As-
suming the polynomial coefficients are deterministic unknown
parameters, the PDF of each received sample is either complex
normal (DA) or a mixture of complex normals (NDA). For
example, in the case of BPSK transmission, the PDFs of each
sample are

(4)

Due to the received samples’ independence, the overall received
vector PDF is the product of the received samples’ PDFs.

While various definitions of SNR are possible, in this paper,
the term SNR refers to a “locally averaged SNR,” i.e., the SNR
over a specific channel realization

(5)

The SNR estimation problem may be stated as: Given the
known symbols and the observation vector along with its
statistical model, estimate the SNR. We will also be interested
in the SNR (in decibels) to be denoted as .

III. PERFORMANCE LIMITATIONS

The inherent performance limitations on SNR estimation are
investigated using the CRB [10]. The importance of the CRB
lies in the fact that, as the number of samples increases, it may
be attained by the ML estimator. Therefore, we will use this
bound in order to evaluate the asymptotic estimation perfor-
mance. In addition, this analysis will give insight as to the ef-
fect of the channel’s time variation and unknown phase on SNR
estimation.
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The CRB for SNR estimation is

CRB (6)

where the SNR is a function of a vector of unknown pa-
rameters in real channels, or
in complex channels, and is the Fisher information ma-
trix (FIM). Likewise, the CRB for is CRB
CRB .

The derivation of the CRB involves tedious algebraic manip-
ulations. These mainly consist of the derivations of the FIM el-
ements which are provided in Appendix I, and the application
of (6). We now give the major final results.

A. DA Scenarios

The CRB for DA SNR estimation is derived using (6) with the
associated FIM elements in Appendix I. The result has a simple
closed form

CRB (7)

This bound has been previously presented for the special case
of constant , real channels with PSK modulation in
[5].2 However, straightforward application of the FIM elements
in (6) result in bound (7) for all of the possible DA problem for-
mulations, including BPSK and QPSK constellations, as well
as for complex channels (i.e., there is no degradation in asymp-
totic performance due to unknown phase). Moreover, the DA
bound for time-varying channels coincides with (7),
as well, for all . This is quite surprising, as it means that the
asymptotic performance does not depend on the number of un-
known channel parameters. Therefore, for the same SNR, the
bound in a constant channel with a few unknown parameters is
identical to the bound in a time-varying channel with many un-
known parameters. This implies that there is no inherent penalty
in asymptotic performance incurred by overestimating . Fi-
nally, as will be explained in the following, this bound also holds
for NDA estimation in high SNR. This is intuitively reasonable,
since high SNR implies an ability to perfectly estimate the trans-
mitted symbols, effectively yielding a DA-type problem.

B. NDA, Constant Channel Scenarios

The CRB for the NDA, constant channel scenario can be de-
rived through (6) with the FIM elements associated with the

channel [9]

CRB
BPSK

QPSK
(8)

2In [5], the bound for BPSK constellations had an additional factor of two,
compared with (7). This stems from the real-noise model used in that work.

Fig. 1. Normalized root CRB for constant, real, and complex channels,L =1.

where

(9)

is a measure for the “information” each sample carries about its
SNR. This function is monotonically increasing with its SNR,
eventually converging to one when the BPSK symbol is known
a priori, or can be estimated without error, i.e., infinite SNR
(for proof, see Appendix II). For convenience, a finite series
approximation of this integral, which eliminates the need for
numerical integration, is provided in [15].

Examining the constant channel bounds in Fig. 1 reveals that
generally, the lack of DA symbols degrades the performance,
but at high SNR, this degradation is negligible. Moreover, the
choice of symbol constellation results in different NDA bounds.
This is very intuitive, as it is more difficult to decide on QPSK
symbols than it is to decide on BPSK symbols (assuming the
same symbol power).

While (8) appeared previously in [9], it was only derived for
the special case of real channels. Using the complex FIM ele-
ments in Appendix I, and a cumbersome 3 3 matrix inversion,
it is possible to show that this bound holds for complex chan-
nels, as well, i.e., asymptotically, unknown phase does not de-
grade the performance of SNR estimation in constant channels.

C. NDA, Time-Varying Channel Scenarios

A closed form for the general CRB in time-varying channels
is not available. Numerical evaluation of it in different scenarios
led to the following observations. As previously stated, the DA
bound does not change when the channel becomes time-varying.
This is not true for the NDA bound. Because of the time vari-
ation, some received samples carry more “information” than
others. These samples are those with the higher channel gains,
for which a reliable estimate of can be more easily obtained.
In DA estimation, are known, and therefore, all the received
samples carry the same “information.” Generally, time variation
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can improve or degrade performance. However, numerical eval-
uation of the bound indicates that the effect of time variation is
not significant (the peak change is around 5%).

IV. SNR ESTIMATORS

In this section, we will give a brief review of previously re-
ported SNR estimators. Next, we will propose an improved es-
timator based on the polynomial-in-time model.

A. Previous Estimators

In [3] and [4], the DA ML estimator was first derived for
constant channels. It may be written as

(10)

where and are projection matrices projecting onto the
rank-one “signal-plus-noise” and rank- “noise” subspaces,
respectively, and is a length- vector with the symbols .
One of the first NDA SNR estimators is the intuitive, DD-based
ML estimator of [3] and [4]. This estimator first decides on the
symbols. For example, the BPSK symbol estimates for the con-
stant, real channel are sign . It then uses these deci-
sions in the DA ML estimator as if they were the correct trans-
mitted symbols.

Another well-known NDA estimator for constant channels is
based on estimates of the second and fourth moments of the data,
and will be referred to as the MM estimator, e.g., [5]

(11)

where and
. Use of even order moments gives

rise to an estimator which has the attractive property of not
requiring explicit symbol decisions. Simulation results in
Section IV, as well as [5], indicate that this estimator can
outperform the DD estimator at low SNR for sufficiently long
data records. However, at high SNR, when the decisions of the
DD estimator are highly accurate, the performance of the MM
estimator is generally worse.

As will be seen in Section IV, all of these estimators perform
well when used in a constant channel model. However, even
small deviations from this model can dramatically degrade their
performance.

B. A Novel ML Estimator

In this section, we introduce an estimator specifically de-
signed for DA and NDA SNR estimation in the complex
polynomial-in-time, time-varying fading-channel model. The
derivation for the real channel is very similar, and is, therefore,
omitted.

The novel estimator is based on the ML estimator associated
with the normal mixture NDA PDF. There is no closed-form
ML solution for such estimators. We therefore propose the use

of the EM algorithm to iteratively find the parameter estimates
which maximize the likelihood function.3

The EM algorithm is a general iterative method for finding
at least a local maximum of a likelihood function given “in-
complete data” [10]. In our context, the “incomplete data” is
the received data vector and the known symbols ( ), whereas
the “complete” data includes the unknown symbols ( ), as
well. Define the “complete” data log-likelihood function

(12)
where is a constant. Observe that since are random, this
function is a random variable. The EM algorithm is iterative.
At the th iteration, it first finds the Expectation of this random
function with respect to the missing data (here ), given the
incomplete data and the current parameter estimates. Next, the
parameter vector which Maximizes this expectation is found

(13)

Straightforward differentiation of this expectation yields the pa-
rameters which minimize it

(14)

(15)

where and correspond to an polynomial order
channel model, and is a diagonal matrix with the following
diagonal elements:

DA samples
NDA samples.

(16)

In general, the NDA diagonal elements are the expected mean
value of the unknown symbols. For example, these soft deci-
sions on the symbols in BPSK transmission can be derived as

, where
denotes the hyperbolic tangent, and . Finally,
the estimator for the SNR at each iteration is defined as

(17)

where and
are projection matrices projecting onto the “signal-plus-noise”
and “noise” subspaces.

An important issue in any iterative algorithm is the selec-
tion of initial conditions. In real channels, the choice of initial
conditions was not found to be crucial for convergence. Hence,
an intuitive first iteration can be choosing infinite SNR, i.e.,

and . Note that at high SNR, the sign

3It should be mentioned that this approach is similar to the one presented in
[11], in the context of joint time-varying channel estimation and data detection.
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is a good approximation for the hyperbolic tangent, and there-
fore, the first iteration is actually the well-known DD estimator.
Simulations show that using these initial conditions and five it-
erations leads to satisfactory performance.

On the other hand, in complex channels, the likeli-
hood was found to have many local maxima. Therefore,
using infinite SNR alone does not provide satisfactory ini-
tial conditions, and an initial phase estimate is required.
For example, a simple phase estimate in BPSK can be
[14] angle angle . In highly
time-varying complex channels, finding good initial conditions
is more difficult.

A known method for improving estimator performance is cal-
culating and removing bias [5]. In the high-SNR NDA case, the
matrix is approximately equal to the matrix . In this case,
as well as the DA case, it is easy to verify that the estimator is a
scaled noncentral distributed random variable [16]

(18)

where denotes the noncentral distribution with de-
grees of freedom (DOFs) and , and with noncentrality
parameter . The moments of such random variables are well
known in the literature [16]. Using the first moment, an unbi-
ased (UB) estimator (i.e., ) can be derived

(19)

However, once the bias is removed, can be negative or zero.
To deal with this problem, we define some and clip the
estimate to this value if it is lower.

V. ANALYTICAL PERFORMANCE

Since the asymptotic ML performance is described by the
CRB, here we focus on the exact performance of the DA es-
timator. At high SNR, this analysis holds for the NDA esti-
mator, as well. Performance is evaluated both when an assumed
polynomial channel model order coincides with the true
channel model order , and when it does not, giving rise to
model-order mismatch. The analysis is carried out for complex
channels, but can easily be extended to real channels (by substi-
tuting with ).

A. Correct Model-Order Performance

As stated earlier, in the DA case, is a scaled noncentral
distributed random variable. The variance of is
[17]

(20)

Thus, the mean-square error (MSE) of is directly obtained
as

MSE (21)

It is easy to verify that asymptotically, i.e., as long as ,
the MSE attains the CRB of (7) as expected

MSE CRB (22)

Examining the derivative of the MSE with respect to

MSE
(23)

reveals that the derivative is positive for all , and there-
fore, increasing increases the MSE. However, as previously
stated, asymptotically, this increase is negligible

MSE
(24)

In addition, as expected, the MSE in complex channels is
higher than the MSE in real channel . Again, asymptotically,
this increase is negligible.

B. Mismatched Model-Order Performance

Performance analysis under channel model-order mismatch
will give insight as to which should be selected when de-
riving an estimator for an actual time-varying channel.

When the estimator is based on a higher model order than the
true model order , the estimator is still a scaled non-
central random variable, only with a different scale factor and
different number of DOFs. As long as , the MSE does
not increase, due to using a higher estimator than is neces-
sary. The more interesting question is how the estimator behaves
when the selected estimator model order is too low .
In an model-order channel, the model-order estimator is
a scaled, doubly noncentral random variable [18]

(25)

where denotes a doubly noncentral distribu-
tion with DOFs and , and with noncentrality parameters
and . Estimator performance is determined by the moments of
a doubly noncentral random variable which
are (see Appendix III)

(26)

where is the Gamma function, and is the hyper-
geometric function [19].

For example, let us examine the performance of the
order estimator in the order channel. For simplicity, we
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Fig. 2. DA performance of � (L = 1 model order) estimator in a mis-
matched L = 2 model-order channel, and performance of � (L = 2),
T T = NI, c = (1��)�, and c = ��, for � = 10 dB and � = 12 dB.

choose such that . In addition, we define
, , and , where is a

mismatch parameter which divides the energy between the two
coefficients. When , there is no model mismatch. Under
these assumptions, in (25). For comparison, the
performance of the estimator, based on the correct
model order, does not depend on .

Plotting the theoretical bias, standard deviation (STD) and
root mean-squared error (RMSE) of these estimators (Fig. 2)
reveals the following properties. The use of a mismatched esti-
mator usually degrades the performance. The model-order error
causes a severe bias, and although there is a decrease in vari-
ance, the total MSE increases. This performance degradation
increases as the mismatch parameter gets larger. As dramati-
cally seen in Fig. 2, when the SNR increases, the mismatch ef-
fect is more significant. This is expected, since when the SNR
increases, the model error dominates the error caused by noise.
When the mismatch parameter is very low, and, in particular,
when , the model-order estimator becomes
the correct estimator, and therefore, is slightly better than the

model-order estimator. As proved in the previous sec-
tion, if , this difference is negligible.

VI. EMPIRICAL PERFORMANCE

In this section, we evaluate the estimators’ performance using
computer simulation. First, we examine the performance of the
various NDA estimators in constant channels. Fig. 3 shows the
empirical RMSE of the estimators when compared with the
CRB. It is seen that, as expected, the DD estimator offers accept-
able performance only for sufficiently high SNRs (where the de-
cisions on the symbols are highly reliable), eventually reaching
the CRB. (Note that DD can only be used in real channels.) On
the other hand, while the MM estimator performance is better
than that of DD at low SNRs, high-SNR performance is inferior.
Last, the newly proposed estimators (with EM it-
erations) are seen to outperform both DD and MM, yielding sta-
tistically efficient estimation over a wide range of SNRs.

Fig. 3. NDA RMSE of � , QPSK constellation, N = 100, and L = 1.

Fig. 4. NDA normalized RMSE of � , real Clarke’s time-varying channel,
QPSK constellation, f = 24300 Hz, and f = 100.

The low SNR RMSE of the estimators is smaller than the
CRB due to a severe bias observed in this region. As predicted
by ML properties, using a higher number of symbols elimi-
nates this behavior. It is also seen that the degradation in per-
formance due to overestimating the channel’s model order (i.e.,
using in a constant channel) is negligible.

Next, we examine the estimators’ performance in Clarke’s
time-varying channel model. In the simulations, we generate
random channels according to Clarke’s model, but normalized
them so they will fit specific deterministic SNRs. This enables
us to compare the performance with the previously derived CRB
at a particular SNR. Fig. 4 reveals that in the low-SNR region,
the main cause for performance degradation is the NDA nature
of the problem. Here, the model error is negligible compared
with the noise error. Therefore, the results are similar to those
presented in Fig. 3. On the other hand, in the high-SNR regions,
the unknown symbols are easily estimated, and the main cause
for performance degradation stems from the inaccurate channel
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model. A significant difference in performance among the es-
timators is observed. As expected, the higher order estimators
perform better, especially as increases. This is par-
ticularly true, at high SNR, when the model error dominates the
noise errors and introduces a severe bias. It can be inferred that
for a given SNR, the CRB can be asymptotically attained with
increasing model order.

VII. CONCLUSIONS

This paper has considered the problem of DA and NDA SNR
estimation in time-varying fading channels. The fading channel
has been modeled as a polynomial-in-time. The associated CRB
and the ML estimator have been derived, and the EM algorithm
was used for implementing the ML estimator in NDA scenarios.
The performance of the DA estimators was analytically com-
puted with and without channel polynomial order mismatch.
Simulation results have been presented to investigate estimator
performance for fading channels, with temporal correlation gov-
erned by the well-known Clarke model. Theoretical analysis has
shown that the accuracy of SNR estimation should not degrade
due to the channel’s time variation. It was found that the new
estimators yield dramatic performance improvements over the
conventional constant channel estimator at a moderate increase
in computational complexity. Statistical efficiency is observed
over a wide range of SNRs and number of measurements.

APPENDIX I
NDA FIM ELEMENT DERIVATION FOR

REAL AND COMPLEX CHANNELS

Derivation of the elements of the FIM follow from tedious but
straightforward derivations paralleling those in [9]. Due to space
limitations, we now provide the final FIM elements for both the
real and complex polynomial-in-time channel. More details can
be found in [20].

Due to the independent received samples, the overall FIM can
be calculated as the sum of samples’ FIMs

(27)

The th FIM, , for estimating in a real
channel, is a matrix with the following
elements:

(28)

where in BPSK constellations, and
in QPSK constellations, and where is one

for the DA scenario and as in (9) for the NDA scenario.
The FIM for estimating in a complex

channel is a matrix with the following
elements:

(29)

where , , and where is zero in
the DA scenario, and as follows in the NDA scenario:

(30)

APPENDIX II
THE FUNCTION

In this appendix, we prove the convergence of the function

(31)

The right-hand side integral is positive, and therefore, .
On the other hand, using , a lower bound on

can be obtained

(32)

This last integral has a closed form, involving the error function,
e.g., [19], which is known to converge to one. Thus, at high
SNR, the function is bounded by one from both sides and
converges to it.

APPENDIX III
MOMENTS OF A DOUBLY NONCENTRAL RANDOM VARIABLE

In this appendix, we find the moments of a doubly noncentral
distributed random variable [18]: , where
and are the DOFs, and and are the noncentrality

parameters. This random variable is known to be the ratio of
two independent noncentral chi-squared random variables

, where denotes a noncentral
chi-squared random variable with noncentrality parameter
and DOFs. Therefore, the moments of are

(33)
where the last equality results from the independence of and

. The positive moments of the numerator are, e.g., [21]

(34)

The moments of the denominator are derived using the mo-
ment-generating function, e.g., [17]:

. Introducing the Gamma integral, e.g.,
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[19]: , substituting , rear-
ranging, and applying the expectation yields

(35)

Substituting

(36)

where is the hypergeometric function, e.g., [22]. Using
these expectations in (33) provides a closed form of the mo-
ments of the doubly noncentral distribution.
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